ANALISIS KESTABILAN MODEL P REY − P REDAT OR HOLLING TIPE III

نویسندگان

چکیده

Model matematika yang merepresentasikan interaksi antara prey (mangsa) dan (pemangsa) dikenal dengan model prey-predator. Penelitian ini membahas dinamika prey-predator memuat fungsi respon Holling tipe III, dimana predator mencari mangsa lain ketika dimakannya mulai berkurang. Dinamika diamati menganalisis kestabilan sistem, yaitu sistem di sekitar titik ekuilibriumnya. Secara analitik terdapat tiga ekuilibrium dari model. Terdapat satu tidak stabil dua kestabilannya tergantung pada nilai parameter diberikan. Hasil simulasi numerik menunjukkan sifat sama untuk keseimbangan tersebut digunakan penelitian ini.Kata Kunci: Prey-predator, Titik ekuilibrium.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

equations P II , P III , P IV , P V , and

We propose a quantization of the Painlevé system of type A (1) l studied by M. Noumi and Y. Yamada [13]. This quantization has the affine Weyl group symmetry of type A (1) l (l ≥ 2) as well as the Lax representation. For even l, the quantized system of type A (1) l can be obtained as the continuous limit of the discrete system constructed from the affine Weyl group symmetry of type A (1) l+1 .

متن کامل

P 1 or P 1 Å ? Or something else ?

The October 1998 release of the Cambridge Structural Database (1992) contains structural details (unit-cell dimensions and atom coordinates) for nearly 1300 distinct entries under space group P1 (No. 1); for 279 of these entries, the space-group designation is incorrect. The most common type of error, occurring for 157 entries with Z > 1, seems to have resulted from a simple misprint ± the omis...

متن کامل

on $p$-soluble groups with a generalized $p$-central or powerful sylow $p$-subgroup

let $g$ be a finite $p$-soluble group‎, ‎and $p$ a sylow $p$-subgroup of $g$‎. ‎it is proved‎ ‎that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are‎ ‎contained in the $k$-th term of the upper central series of $p$‎, ‎then the $p$-length of‎ ‎$g$ is at most $2m+1$‎, ‎where $m$ is the greatest integer such that‎ ‎$p^m-p^{m-1}leq k$‎, ‎and the exponent of the image of $p$...

متن کامل

on p-soluble groups with a generalized p-central or powerful sylow p-subgroup

let $g$ be a finite $p$-soluble group‎, ‎and $p$ a sylow $p$-sub-group of $g$‎. ‎it is proved‎ ‎that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are‎ ‎contained in the $k$-th term of the upper central series of $p$‎, ‎then the $p$-length of‎ ‎$g$ is at most $2m+1$‎, ‎where $m$ is the greatest integer such that‎ $p^m-p^{m-1}leq k$‎, ‎and the exponent of the image of $p$...

متن کامل

From Data to the p-Adic or Ultrametric Model

We model anomaly and change in data by embedding the data in an ultrametric space. Taking our initial data as cross-tabulation counts (or other input data formats), Correspondence Analysis allows us to endow the information space with a Euclidean metric. We then model anomaly or change by an induced ultrametric. The induced ultrametric that we are particularly interested in takes a sequential –...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Matematika Unand

سال: 2021

ISSN: ['2721-9410', '2303-291X']

DOI: https://doi.org/10.25077/jmu.10.1.29-37.2021